¡Ajá! Paradojas que hacen pensar (Martin Gardner).
Echando la vista atrás, podemos comprobar que en alguna ocasión hemos coincidido con un grupo de personas entre las que había dos que celebraban el mismo día su cumpleaños. ¡O incluso te ha pasado a ti! ¿Es esto muy común?
¿Cuál es la probabilidad de que al menos dos personas tengan el mismo día y mes de nacimiento si se dan cita 10 personas? ¿Y si fueran 100? ¿Cuántas personas tendrían que reunirse para que tengamos la certeza de que al menos 2 tengan la misma fecha de cumpleaños?

Empecemos por el caso más sencillo, y contestemos a una sencilla pregunta: ¿cuántos días diferentes tiene un año?
La respuesta no es única, puesto que el calendario tiene en principio 365 días, pero cada 4 años añadimos un día (el 29 de febrero), terminando el ciclo con 366 días (año bisiesto). Asumimos que el año tiene 365 para la paradoja de los cumpleaños (puedes estimar la probabilidad de coincidencia para años bisiestos fácilmente).
Contestemos entonces a la anterior pregunta: ¿cuántas personas debemos reunir para asegurar que habrá coincidencia? Supongamos que se da la circunstancia que van llegando personas, y sus fechas de cumpleaños son distintas. Una vez que hubiera tantas personas como días tiene un año (365), al llegar la siguiente persona, forzosamente coincidirá su cumpleaños con alguien de quienes ya se encuentran en el lugar, es decir: si se reúnen 366 personas, ya habrá coincidencia con total seguridad. ¿Queremos encontrar coincidencia en cumpleaños al 100%? Pues deberán asistir, al menos 366 personas. En cualquier lugar que coincidan 500, 1 000 o 20 000 personas, será un suceso seguro.

Para los restantes casos, como propone Martin Gardner en «¡Ajá! Paradojas que hacen pensar«, analizaremos el caso complementario de la siguiente forma: si la probabilidad de que algo ocurra es del 25%, por ejemplo, la probabilidad de que no ocurra será del 75% restante. Se expresaría así:
Probabilidad de coincidencia + Probabilidad de la no coincidencia = 100%
De esta forma, podemos tratar de calcula la probabilidad de la no coincidencia (más sencilla de obtener) como medio para conocer la probabilidad de la coincidencia de dos fechas de cumpleaños.
Llamemos A al suceso coincidencia de cumpleaños.
El suceso «no coincidencia» lo denotamos Ac (complementario de A).
Supongamos que estamos en un recinto donde se ha convocado a un grupo de personas, que van llegando una a una. Les vamos preguntando su fecha de cumpleaños, y la vamos tachando en un calendario. Queremos estudiar la no coincidencia (Ac).

Llega la primera persona. Hay disponibles 365 días aún. Los casos favorables (de no coincidencia) de fechas coinciden con los casos posibles: 365. Está claro porque para coincidir debe haber al menos 2 personas, y aún solo hay una. Cuando solo hay una persona:

La probabilidad de no coincidencia será del 100%. Luego, la probabilidad de coincidencia será del 0% (suceso imposible).
Llega la segunda persona. Ya hay una fecha marcada en el calendario, por lo que para que no coincidan quedan disponibles 364 días del año:

La probabilidad de no coincidencia será del 99,73%. Luego la probabilidad de coincidencia será del 0,27%.
Al llegar la tercera persona, ya están ocupadas 2 fechas del calendario, por lo que para no coincidir su cumpleaños debería ser cualquiera de los 363 días restantes del año:

La probabilidad de no coincidencia será del 99,18%. Luego la probabilidad de coincidencia será del 0,82%.
Vemos que a medida que llegan personas, la probabilidad de que no coincidan va reduciéndose, es decir: aumenta la probabilidad de coincidencia.
¿Cuántas personas han llegado cuándo la probabilidad de coincidencia supera el 50%? ¡23! Veámoslo:

Con 23 personas en el recinto, la probabilidad de no coincidencia será del 49,3%. Luego la probabilidad de coincidencia será del 50,7%.

De la misma forma, obtendríamos que la probabilidad de coincidencia, a medida que llegaran más personas, sería la siguiente:
- Con 30 personas, la probabilidad de coincidencia sería del 71%.
- Con 50 personas, la probabilidad de coincidencia sería del 97%.
- Con 60 personas, la probabilidad de coincidencia sería del 99%.
- Con 70 personas, la probabilidad de coincidencia sería del 99,9%.
Vemos pues que aún lejos de las 366 personas necesarias para tener la certeza de que se dará la coincidencia, la probabilidad de que ocurra es prácticamente del 100%.

¿Hacemos la prueba? ¿Hay coincidencia en tu clase? ¿En un partido de fútbol? ¿En un torneo de ajedrez? ¿En una celebración familiar?
Como curiosidad, ¿sabrías cuál sería la probabilidad de coincidencia con tu cumpleaños, si os reunís 23 personas?

Mayte Jiménez Romera
Latest posts by Mayte Jiménez Romera (see all)
- Potencias: la leyenda del ajedrez - mayo 16, 2023
- Reto matemáticas y ajedrez - mayo 16, 2023
- Repasa potencias de 2 y 3 a salto de caballo - mayo 15, 2023