Paradojas estadísticas: la paradoja de los cumpleaños

¡Ajá! Paradojas que hacen pensar (Martin Gardner).

Echando la vista atrás, podemos comprobar que en alguna ocasión hemos coincidido con un grupo de personas entre las que había dos que celebraban el mismo día su cumpleaños. ¡O incluso te ha pasado a ti! ¿Es esto muy común?

¿Cuál es la probabilidad de que al menos dos personas tengan el mismo día y mes de nacimiento si se dan cita 10 personas? ¿Y si fueran 100? ¿Cuántas personas tendrían que reunirse para que tengamos la certeza de que al menos 2 tengan la misma fecha de cumpleaños?

Analítica, Gráficos, Negocio, Mujer
Fuente: pixabay.com

Empecemos por el caso más sencillo, y contestemos a una sencilla pregunta: ¿cuántos días diferentes tiene un año?

La respuesta no es única, puesto que el calendario tiene en principio 365 días, pero cada 4 años añadimos un día (el 29 de febrero), terminando el ciclo con 366 días (año bisiesto). Asumimos que el año tiene 365 para la paradoja de los cumpleaños (puedes estimar la probabilidad de coincidencia para años bisiestos fácilmente).

Contestemos entonces a la anterior pregunta: ¿cuántas personas debemos reunir para asegurar que habrá coincidencia? Supongamos que se da la circunstancia que van llegando personas, y sus fechas de cumpleaños son distintas. Una vez que hubiera tantas personas como días tiene un año (365), al llegar la siguiente persona, forzosamente coincidirá su cumpleaños con alguien de quienes ya se encuentran en el lugar, es decir: si se reúnen 366 personas, ya habrá coincidencia con total seguridad. ¿Queremos encontrar coincidencia en cumpleaños al 100%? Pues deberán asistir, al menos 366 personas. En cualquier lugar que coincidan 500, 1 000 o 20 000 personas, será un suceso seguro.

Analítica, Gráfico, Dibujo, Colores
Fuente: pixabay.com

Para los restantes casos, como propone Martin Gardner en «¡Ajá! Paradojas que hacen pensar«, analizaremos el caso complementario de la siguiente forma: si la probabilidad de que algo ocurra es del 25%, por ejemplo, la probabilidad de que no ocurra será del 75% restante. Se expresaría así:

Probabilidad de coincidencia + Probabilidad de la no coincidencia = 100%

De esta forma, podemos tratar de calcula la probabilidad de la no coincidencia (más sencilla de obtener) como medio para conocer la probabilidad de la coincidencia de dos fechas de cumpleaños.

Llamemos A al suceso coincidencia de cumpleaños.

El suceso «no coincidencia» lo denotamos Ac (complementario de A).

Supongamos que estamos en un recinto donde se ha convocado a un grupo de personas, que van llegando una a una. Les vamos preguntando su fecha de cumpleaños, y la vamos tachando en un calendario. Queremos estudiar la no coincidencia (Ac).

Datos, Negocio, Crecimiento, Estadística
Fuente: pixabay.com

Llega la primera persona. Hay disponibles 365 días aún. Los casos favorables (de no coincidencia) de fechas coinciden con los casos posibles: 365. Está claro porque para coincidir debe haber al menos 2 personas, y aún solo hay una. Cuando solo hay una persona:

La probabilidad de no coincidencia será del 100%. Luego, la probabilidad de coincidencia será del 0% (suceso imposible).

Llega la segunda persona. Ya hay una fecha marcada en el calendario, por lo que para que no coincidan quedan disponibles 364 días del año:

La probabilidad de no coincidencia será del 99,73%. Luego la probabilidad de coincidencia será del 0,27%.

Al llegar la tercera persona, ya están ocupadas 2 fechas del calendario, por lo que para no coincidir su cumpleaños debería ser cualquiera de los 363 días restantes del año:

La probabilidad de no coincidencia será del 99,18%. Luego la probabilidad de coincidencia será del 0,82%.

Vemos que a medida que llegan personas, la probabilidad de que no coincidan va reduciéndose, es decir: aumenta la probabilidad de coincidencia.

¿Cuántas personas han llegado cuándo la probabilidad de coincidencia supera el 50%? ¡23! Veámoslo:

Con 23 personas en el recinto, la probabilidad de no coincidencia será del 49,3%. Luego la probabilidad de coincidencia será del 50,7%.

Cincuenta, Por Ciento, Estadística, Dinero, Firmar
Fuente: pixabay.com

De la misma forma, obtendríamos que la probabilidad de coincidencia, a medida que llegaran más personas, sería la siguiente:

  • Con 30 personas, la probabilidad de coincidencia sería del 71%.
  • Con 50 personas, la probabilidad de coincidencia sería del 97%.
  • Con 60 personas, la probabilidad de coincidencia sería del 99%.
  • Con 70 personas, la probabilidad de coincidencia sería del 99,9%.

Vemos pues que aún lejos de las 366 personas necesarias para tener la certeza de que se dará la coincidencia, la probabilidad de que ocurra es prácticamente del 100%.

Cien, Por Ciento, Estadísticas, Dinero
Fuente: pixabay.com

¿Hacemos la prueba? ¿Hay coincidencia en tu clase? ¿En un partido de fútbol? ¿En un torneo de ajedrez? ¿En una celebración familiar?

Como curiosidad, ¿sabrías cuál sería la probabilidad de coincidencia con tu cumpleaños, si os reunís 23 personas?

Sería del 6,1%.

Paradojas probabilísticas (Martin Gardner).

1. La falacia del jugador.

La falacia del jugador o la falacia de Montecarlo se da cuando se piensa erróneamente que el hecho de no haber obtenido aún un resultado favorable en un juego de azar hará más probable que esté a punto de obtenerse.

También se da a la inversa: pensar que por haber obtenido un resultado concreto recientemente, la probabilidad de que vuelva a salir se reduce.

Dado, Rojo, Dos, Juego, Laminación

Estas ideas hacen pensar que los dados tienen memoria, por ejemplo, y que si llevamos una racha sin ver un determinado resultado, la probabilidad de que se obtenga en la siguiente tirada es mayor que si hubiera salido ya.

No hay que confundir este caso con la probabilidad de obtener un resultado concreto en sucesos que no son independientes o que no son equiprobables. Un ejemplo sería si lanzáramos una chincheta, y suponer que existe la misma probabilidad de que se detenga sobre el clavo que sobre su cabeza.

Chinchetas, Multicolor, Color, Ronda
Chinchetas de colores.


Paradojas lógicas (Martin Gardner)

1. Paradoja del mentiroso.

Se trata de variantes de la siguiente afirmación: «Esta frase es falsa» (Grelling).

Supongamos que dijeran:

Esta frase consta de siete palabras.

Podemos contar en ella solo seis palabras, por lo que no sería cierta. Si la corrigiéramos, tendríamos esta otra:

Esta frase no consta de siete palabras.

Pero ahora sí tiene siete palabras, luego se trata de una paradoja, puesto que siendo frases que parecen verdaderas, en realidad son falsas ambas.

2. Paradoja de Platón y Sócrates.

Se trata de un diálogo entre ambos pensadores:

Platón: La próxima declaración de Sócrates será falsa.

Sócrates: Platón ha dicho la verdad.

¿Cómo puede ser esto?

3. Paradojas circulares (o bucles).

Seguramente, habréis escuchado alguna que otra paradoja circular. Son aquellas en las que una vez iniciada la idea ésta no parece tener fin. Algunas las encontramos en forma de canción infantil, incluso.

¿Qué fue antes, el huevo o la gallina?

En el libro de Alicia en el país de las maravillas encontramos esta otra:

Alicia: Estoy soñando con el Rey Rojo. También él duerme y sueña conmigo, que estoy soñando con él, quien sueña conmigo…

4. Paradoja del Quijote.

Esta paradoja se encuentra en el segundo tomo de la obra de Miguel de Cervantes.

Había un guardia apostado en un puente en el que había una horca. El hombre preguntaba a cada visitante:

¿Para qué viene?

Si contesta la verdad, pasa. Si miente, es ahorcado.

Cierto día llegó un visitante y dijo:

¡He venido aquí para ser ahorcado!

Entonces, si no lo ahorcan, habría mentido. Pero si lo ahorcan, habría dicho la verdad y no debería ser ahorcado.

Sancho Panza, La Habana, Estatua, Parque
Sancho Panza

¿Cómo se resolvió la situación?

El guardia no sabía qué hacer, así que pidió audiencia al gobernador de la ínsula para que le indicara qué hacer. Sancho Panza decidió ser clemente, pues en cualquier caso vulneraría la ley.

5. Paradoja de Russell.

Sea W el conjunto de todos los conjuntos C que no se pertenecen así mismos, o sea, C pertenece a W solo cuando C no pertenece a C. Pero entonces se tiene simultáneamente que W se pertenece y no se pertenece a sí mismo.

La siguiente paradoja es una versión de esta paradoja:

6. Paradoja del barbero (Russell).

El barbero afeita a todos los que no se afeitan a sí mismos. Averiguar si el barbero se afeita a sí mismo.

La aparición de las paradojas lógicas de Russell a principios de siglo XX produjo una crisis importante, dejando claro que se debían revisar los fundamentos de las matemáticas.

Frege acababa de entregar a imprenta su obra «Los fundamentos de la aritmética» (1902), donde creía haber desarrollado la teoría de conjuntos de forma coherente, capaz de ser punto de partida de otras teorías matemáticas. Fue entonces que Russell le escribió acerca de las paradojas, donde conjuntos en apariencia bien formados eran contradictorios.

Frege añadió un apéndice a su obra, que empezaba así: «Difícilmente puede un científico tener que afrontar nada más indeseable que ver hundirse los cimientos justamente cuando da fin a su obra. Tal es la situación en que me encuentro tras la carta de Mr. Bertrand Russell«.

Una bellísima página de la historia de las matemáticas, ¿verdad?



«¡Ajá! Paradojas que hacen pensar», de Martin Gardner.

Martin Gardner (1914 – 2010) fue un filósofo y divulgador estadounidense que escribió una veintena de libros sobre matemáticas de gran éxito como «¡Ajá! Inspiración», «Carnaval matemático», «El ahorcamiento inesperado y otros entretenimientos matemáticos» o «¡Ajá! Paradojas que hacen pensar».

Tipos de paradojas:

  1. Afirmaciones que parecen falsas, aunque en realidad son verdaderas.
  2. Afirmaciones que parecen verdaderas, pero en realidad son falsas.
  3. Cadenas de razonamientos que conducen a contradocciones lógicas (falacias).
  4. Declaraciones cuya veracidad o falsedad es indecible.

El autor expone algunas paradojas agrupadas en los siguientes capítulos:

  1. Lógica.
  2. Números.
  3. Geometría.
  4. Probabilidad.
  5. Estadística.
  6. Tiempo.

Por bloques, en sucesivas entradas iré recogiendo las que más me han gustado. Espero que os resulten interesantes.